Iterative sliced inverse regression for segmentation of ultrasound and MR images
نویسندگان
چکیده
In this study, we propose an integrated approach based on iterative sliced inverse regression (ISIR) for the segmentation of ultrasound and magnetic resonance (MR) images. The approach integrates two stages. The first is the unsupervised clustering which combines multidimensional scaling (MDS) with K-Means. The dimension reduction based on MDS is employed to obtain fewer representative variates as input variables for K-Means. This step intends to generate the initial group labels of the training data for the second stage of supervised segmentation. We then combine the SIR with the nearest mean classifier (NMC) or the support vector machine (SVM) to iteratively update the group labels for supervised segmentation. The method of SIR is introduced by Li [Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86 (1991) 316–342] to explore the effective dimension reduction (e.d.r.) directions from the training data embedded in high-dimensional space. The test data are then projected onto these directions and the classifiers are further applied to classify the test data. The integrated approach based on ISIR is evaluated on simulated and clinical images, which include ultrasound and MR images. The evaluation results indicate that this approach provides an improvement of image segmentation over the methods to be compared without dimension reduction. 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملSupervised Motion Segmentation by Spatial-Frequential Analysis and Dynamic Sliced Inverse Regression
In this paper, we propose a new method for supervised motion segmentation based on spatial-frequential analysis and dimension reduction techniques. A sequence of images could contain non-ridge motion in the region of interest and the segmentation of these moving objects with deformation is challenging. The aim is to extract feature vectors that capture the spatialfrequential information in the ...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 40 شماره
صفحات -
تاریخ انتشار 2007